D. Cerutti-Maori, C. Carloni, J. Rosebrock, I. Maouloud

Improving the performance of the space observation radar TIRA through dedicated signal processing techniques and advanced experimental modes

01

Tracking and Imaging Radar TIRA

Specifications

- 34 m parabolic dish in Cassegrain configuration
 - High angular velocity (24°/s in az., 6°/s in el.)
 - Very high mechanical pointing accuracy: 0.6" (ca. 3 m at a range of 1000 km)
- L-band tracking radar
 - Center frequency: **1.3 GHz**
 - Auto-tracking (monopulse)
 - Beamwidth: 0.49° (8.6 km at R = 1000 km)
 - Detection sensitivity (single pulse): 2 cm at R = 1000 km
- Ku-band imaging radar
 - Center frequency: **16.7 GHz**
 - Beamwidth: 0.031° (540 m at R = 1000 km)

Specifications

- 34 m parabolic dish in Cassegrain configuration
 - High angular velocity (24°/s in az., 6°/s in el.)
 - Very high mechanical pointing accuracy: 0.6" (ca. 3 m at a range of 1000 km)
- L-band tracking radar
 - Center frequency: **1.3 GHz**
 - Auto-tracking (monopulse)
 - Beamwidth: 0.49° (8.6 km at R = 1000 km)
 - Detection sensitivity (single pulse): 2 cm at R = 1000 km
- Ku-band imaging radar
 - Center frequency: **16.7 GHz**
 - Beamwidth: 0.031° (540 m at R = 1000 km)

M. Albrecht et al. : "Space situational awareness using cooperative networks of phased-array radars"

Some typical products

L-band tracking radar

• Ku-band imaging radar

Performance improvement through signal processing

- Is it possible to improve the performance of the TIRA system without modifying the system hardware? If yes, how?
- Goal
 - Better support for the GSSAC, space agencies, and NATO operations
- Approach
 - Development of new observation modes
 - Joint exploitation of the data measured by the two radars
 - Derivation of advanced processing techniques
 - Improvement of the accuracy of the measured parameters
 - Estimation of additional parameters

02

Experimental high-resolution observation mode

Objective and principle

Objective

- Generation of high-quality observation vectors
- The experimental mode uses the data measured by the two radars
 - Precise measurement of the range using the imaging radar
 - Innovative processing of the tracking radar data
 - 3-step processing based on weighted LS, coherent processing and resolution of the range rate ambiguities
 - Estimation of new parameter, the range rate rate
- Contribution to operation support
 - All SSA tasks that require highly accurate orbital measurements

Range

Range rate

Range rate rate

Statistical analysis

- Improvement factor over current processing (std)
 - Range (L-band data): 1.4
 - Range rate: 5.8
 - Elevation angle: 1.4
 - Azimuth angle: 1.4
 - Range (Ku-band data): 36.6
- A factor 1.4 in the estimation accuracy corresponds to a SNR improvement of 3dB

TRI AND TO THE

03

Initial Orbit Determination (IOD)

TINI

11 11

- Objective
 - First orbital data of newly detected objects
- Derivation of a new IOD method exploiting the range rate rate
 - This parameter gives information about the velocity of a space object
- Contribution to operation support
 - Tracking of hostile satellites/unknown objects after their detection
 - Fragmentation events

04

Discrimination of multiple objects

Discrimination of multiple objects

Objective and principle

Objective

- Separation of multiple objects in the radar beam
- Challenging case
 - Objects have similar orbit parameters and are located in the same range/Doppler resolution cell
- Derivation of tailored coherent processing techniques
 - Discrimination of objects in LEO and GEO
- Contribution to operation support
 - Detection and identification of hostile objects in the surrounding of an allied satellite
 - Surveillance of the early phase of space missions by monitoring the number of released objects

Discrimination of multiple objects LEO

- Challenging aspects
 - Fast variation of the range rate and range rate rate
 - Objects with a large size difference
- Observation of the Astroscale mission
 - ELSA-D ~ 100 cm × 70 cm × 70 cm
 - ELSA-D CLIENT ~ 50 cm × 50 cm × 20 cm

Discrimination of multiple objects GEO

- Challenging aspects
 - Low SNR, single pulse detection is usually impossible
 - Objects with a large size difference
- Observation of Alcomsat-1
 - Integration over 8 s
 - Processing gain: ~24 dB
 - Another object could be detected
 - Unknown/uncorrelated object, object having performed a maneuver?

Discrimination of multiple objects GEO

- Challenging aspects
 - Low SNR, single pulse detection is usually impossible
 - Objects with a large size difference
- Observation of Alcomsat-1
 - SNR of Alcomsat-1 after integration: ~23 dB
 - Precise estimation of the range rate and range rate rate of the objects

Discrimination of multiple objects GEO

- Challenging aspects
 - Low SNR, single pulse detection is usually impossible
 - Objects with a large size difference
- Observation of Alcomsat-1
 - SNR of Alcomsat-1 after integration: ~23 dB
 - Precise estimation of the range rate and range rate rate of the objects
 - It is possible to estimate the LOS of the objects from the monopulse ratio

-141.5 -141.4 -141.3 -141.2 -141.1 -141

Azimuth angle [deg]

-140.9 -140.8 -140.7 -140.6

24.5 24.4 24.3

Fraunhofer Institute for High Frequency Physics and Radar Techniques FHR

Thank you for your attention! Questions?

IN AN

Fraunhofer Institute for High Frequency Physics and Radar Techniques FHR

(an)

EE EE

Contact

Dr. Delphine Cerutti-Maori Delphine.Cerutti-Maori@fhr.fraunhofer.de